Problem Set 3 – Statistical Physics B

Problem 1: Derivation of the virial expansion

- (a) Derive the virial expansion for the pressure up until $\mathcal{O}(\rho^4)$. You might want to consider the strategy from the lecture notes. Give explicit expressions for $B_2(T)$ and $B_3(T)$ in terms of the Mayer function.
- (b) Suppose one would add a three-body potential to the microscopic classical Hamiltonian. Will the second virial coefficient depend on this three-body potential? Prove your answer.
- (c) Derive the virial expansion of the radial distribution function for a pair-wise additive interacting classical system,

$$
g(r; \rho, T) = g^{(0)}(r; T) + \rho g^{(1)}(r; T) + \dots
$$
\n(1)

and give an explicit expression for the expansion coefficients in terms of the Mayer function. What is the physical interpretation of these expansion coefficients?

Problem 2: The second virial coefficient for model potentials

We recall the definition of the second virial coefficient, $B_2(T) = -(1/2) \int d\mathbf{r} f_M(r)$, with f_M the Mayer function.

- (a) Compute $B_2(T)$ for a hard-sphere system and for a square-well fluid. Under which conditions does the square-well fluid reduce to the hard-sphere limit? Check that this is also reflected in the expression of $B_2(T)$. What is the Boyle temperature in both cases? Give a physical explanation.
- (b) Show that under certain conditions

$$
B_2(T) = -\frac{1}{6k_B T} \int_0^\infty dr \, 4\pi r^3 v'(r) \exp[-\beta v(r)].
$$
\n(2)

What are these conditions? Compute $B_2(T)$ for potentials of the form $v(r) = \alpha/r^n$ with $n > 3$ in terms of the Euler Gamma function.

- (c) Consider a Lennard-Jones fluid. Explain the terms in this potential. What is the minimum of the potential? Give a physical interpretation. Compute the force acting on a particle. What is the direction of the force? When is the force maximal/minimal?
- (d) Give an expression of the ratio $B^* = B_2^{\text{LJ}}/B_2^{\text{HS}}$ in terms of dimensionless temperature $T^* = k_B T / \epsilon$. By a suitable variable substitution, show that

$$
B^*(T^*) = \frac{8}{\sqrt{2}T^*}e^{1/T^*}\frac{1}{2}\int_0^\infty du \,\frac{u-1}{\sqrt{u}}e^{-(1/T^*)(u-1)^2}.\tag{3}
$$

For which temperature does the LJ fluid reduce to the hard-sphere fluid based on the second virial coefficient?

- (e) Compute the integral numerically or analytically. For an analytical calculation, you might consider the following steps:
	- Use the coordinate transformations $u = 1 + \cosh(t/2)$ for $u > 2$ and $u = 1 + \cos(t/2)$ for $0 < u < 2$.

• Express your result in terms of modified Bessel functions of the first kind. The following integral representation might be useful:

$$
I_{\nu}(x) = \frac{1}{\pi} \int_0^{\pi} dt \, e^{x \cos t} \cos(\nu t) - \frac{\sin(\pi \nu)}{\pi} \int_0^{\infty} dt \, e^{-x \cosh t - \nu t}.
$$
 (4)

• Obtain the final result

$$
B^*(T^*) = \frac{\sqrt{2}\pi}{2T^*} e^{1/(2T^*)} \sum_{n=0,1} (-1)^{n+1} \left[I_{(2n+1)/4} \left(\frac{1}{2T^*} \right) + I_{-(2n+1)/4} \left(\frac{1}{2T^*} \right) \right].
$$
 (5)

(f) Determine numerically the Boyle temperature as a function of ϵ for a Lennard-Jones fluid.

Problem 3: Higher order virial coefficient for hard spheres

The third virial coefficient is given by

$$
B_3(T) = -\frac{1}{3V} \int d\mathbf{r}_1 \int d\mathbf{r}_2 \int d\mathbf{r}_3 f_M(r_{12}) f_M(r_{13}) f_M(r_{23}).
$$
 (6)

- (a) Give a geometric interpretation of this formula in the case of hard-sphere interactions. Using these geometric arguments, compute B_3 for hard spheres.
- (b) Introduce the Fourier transform $\tilde{f}_M(k) = \int d\mathbf{r} f_M(r) e^{-i\mathbf{k}\cdot\mathbf{r}}$ of the Mayer function and show that

$$
B_3(T) = -\frac{1}{3} \int \frac{d\mathbf{k}}{(2\pi)^3} \tilde{f}_M(k)^3.
$$
 (7)

Derive an expression for $\tilde{f}_{M}(k)$ for hard spheres, and then compute $B_3(T)$ from it. The following integral might be useful,

$$
\int_0^\infty dx \, x^{-5/2} J_{3/2}(x)^3 = \frac{5}{48\sqrt{2\pi}},\tag{8}
$$

where $J_{\nu}(x)$ is ν -th order Bessel function of the first kind.