
Problem Set 3 – Statistical Physics B

Problem 1: Derivation of the virial expansion

(a) Derive the virial expansion for the pressure up until O(ρ4). You might want to consider
the strategy from the lecture notes. Give explicit expressions for B2(T ) and B3(T ) in
terms of the Mayer function.

(b) Suppose one would add a three-body potential to the microscopic classical Hamiltonian.
Will the second virial coefficient depend on this three-body potential? Prove your answer.

(c) Derive the virial expansion of the radial distribution function for a pair-wise additive
interacting classical system,

g(r; ρ, T ) = g(0)(r;T ) + ρg(1)(r;T ) + .... (1)

and give an explicit expression for the expansion coefficients in terms of the Mayer function.
What is the physical interpretation of these expansion coefficients?

Problem 2: The second virial coefficient for model potentials
We recall the definition of the second virial coefficient, B2(T ) = −(1/2)

∫
dr fM(r), with fM

the Mayer function.

(a) Compute B2(T ) for a hard-sphere system and for a square-well fluid. Under which con-
ditions does the square-well fluid reduce to the hard-sphere limit? Check that this is also
reflected in the expression of B2(T ). What is the Boyle temperature in both cases? Give
a physical explanation.

(b) Show that under certain conditions

B2(T ) = − 1

6kBT

∫ ∞

0
dr 4πr3v′(r) exp[−βv(r)]. (2)

What are these conditions? Compute B2(T ) for potentials of the form v(r) = α/rn with
n > 3 in terms of the Euler Gamma function.

(c) Consider a Lennard-Jones fluid. Explain the terms in this potential. What is the minimum
of the potential? Give a physical interpretation. Compute the force acting on a particle.
What is the direction of the force? When is the force maximal/minimal?

(d) Give an expression of the ratio B∗ = BLJ
2 /BHS

2 in terms of dimensionless temperature
T ∗ = kBT/ϵ. By a suitable variable substitution, show that

B∗(T ∗) =
8√
2T ∗

e1/T
∗ 1

2

∫ ∞

0
du

u− 1√
u

e−(1/T ∗)(u−1)2 . (3)

For which temperature does the LJ fluid reduce to the hard-sphere fluid based on the
second virial coefficient?

(e) Compute the integral numerically or analytically. For an analytical calculation, you might
consider the following steps:

• Use the coordinate transformations u = 1+ cosh(t/2) for u > 2 and u = 1+ cos(t/2)
for 0 < u < 2.
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• Express your result in terms of modified Bessel functions of the first kind. The
following integral representation might be useful:

Iν(x) =
1

π

∫ π

0
dt ex cos t cos(νt)− sin(πν)

π

∫ ∞

0
dt e−x cosh t−νt. (4)

• Obtain the final result

B∗(T ∗) =

√
2π

2T ∗ e
1/(2T ∗)

∑
n=0,1

(−1)n+1

[
I(2n+1)/4

(
1

2T ∗

)
+ I−(2n+1)/4

(
1

2T ∗

)]
. (5)

(f) Determine numerically the Boyle temperature as a function of ϵ for a Lennard-Jones fluid.

Problem 3: Higher order virial coefficient for hard spheres
The third virial coefficient is given by

B3(T ) = − 1

3V

∫
dr1

∫
dr2

∫
dr3 fM(r12)fM(r13)fM(r23). (6)

(a) Give a geometric interpretation of this formula in the case of hard-sphere interactions.
Using these geometric arguments, compute B3 for hard spheres.

(b) Introduce the Fourier transform f̃M(k) =
∫
dr fM(r)e−ik·r of the Mayer function and show

that
B3(T ) = −1

3

∫
dk

(2π)3
f̃M(k)3. (7)

Derive an expression for f̃M(k) for hard spheres, and then compute B3(T ) from it. The
following integral might be useful,∫ ∞

0
dxx−5/2J3/2(x)

3 =
5

48
√
2π

, (8)

where Jν(x) is ν-th order Bessel function of the first kind.
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